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Theory of longitudinal Schottky spectra of ordered ion beams in a storage ring
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The longitudinal Schottky spectrum of an ultracold ion beam in a storage ring is calculated in the
frame of harmonic oscillations of a one-dimensional (1D) Coulomb lattice. It is assumed that the ex-
tremely high cooling rate required to bring the beam into a one-dimensional ordered chain can be pro-
vided by electron or laser cooling. The anharmonic transversal oscillations with temperature much
higher than the longitudinal one are taken into account within the self-consistent phonon approxima-
tion. The Schottky spectrum measured by the pickup system consists of bands located near the harmon-
ics of the revolution frequency of the beam. The total intensity of each band characterizes the tempera-
ture distribution of the phonons in an ionic chain. The amplitude and the width of the peaks in the spec-
trum are a function of the strength of relaxation processes (cooling and heating) and the Coulomb corre-
lations, respectively. It is suggested that a careful analysis of these spectra could be a signature of the

presence of 1D ordering in the beam.

PACS number(s): 41.75.Ak, 29.20.Dh

I. INTRODUCTION

Electron-cooling experiments by Dementev et al. at
Novosibirsk [1] and more recently in the TSR storage
ring at Heidelberg by Jaeschke et al. [2] and in the ESR
storage ring at GSI by Franzke [3] have shown that ex-
tremely small momentum spreads (below 10™°) are possi-
ble for small intensities (typically 10°-10° ions). The
temperatures of such beams are of the order of 1 K in
beam direction, but are several orders of magnitude
higher transversely. Even lower temperatures (tens of
mK) can be achieved with laser cooling, which works in
the longitudinal direction [4,5]. Coulomb scattering (“in-
trabeam scattering”) of the ions from the transverse
direction may result in longitudinal heating, which is as-
sumed in all these experiments to limit the minimum
achievable momentum spread. In the longitudinal phase
plane one thus expects a dynamical equilibrium, which is
a result of the combined effect of cooling and intrabeam
scattering heating. The pioneering experiments with
cooled proton beams at Novosibirsk by Dementev et al.
have suggested, on the other hand, that after careful op-
timization of the cooling device and low enough intensi-
ties the intrabeam scattering is possibly suppressed due to
ordering effects of the ions along their equilibrium orbit
[1]. Computer simulation using molecular dynamics also
indicates that for certain parameters the 'intrabeam
scattering heating is strongly reduced such that the longi-
tudinal “temperature” adopts values low enough to allow
longitudinal ordering [6]. The dimensionless parameter
that determines the conditions for ordering is the ratio of
the Coulomb energy of the lattice to the temperature

(eZ)?
T ’
where Z is the ion charge and d the interionic distance.

This coupling parameter I', defined with the longitudinal
temperature, must exceed unity in such a situation. Such

r= (1.1)
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values are consistent with the measured longitudinal tem-
peratures, but not the transverse ones. They also confirm
theoretical calculations on the minimum achievable
momentum spread and I' values in electron cooling [7].

Considerations of such highly cooled heavy-ion beams
have led to the prediction that a transition to a crystalline
structure might occur if the temperature of the beam is
small enough [8]. More detailed calculations have shown
that such a transition is difficult to achieve in a storage
ring where the beam has a large forward energy com-
pared with the temperatures in the beam frame and bend-
ing is involved which exerts a shear on the particle
motion [9]. The discrete lattice of a strong focusing
storage ring, in particular, was found to introduce
enough heating that crystalline three-dimensional (3D)
states would seem to be unlikely to occur [10].

If the number of particles in the storage ring is below a
certain threshold an ordered structure could be a simple
linear chain of ions [11], which is more likely to be
achievable in a strongly focusing ring [10]. For observa-
tion it is necessary to determine the temperature, energy
distribution, and structure of the ion beam. The most
useful method of beam diagnostics is the analysis of the
Schottky spectrum measured by a pick-up system. The
general theory of Schottky signals is developed in detail
in Refs. [12-15] for the case of the plasma approxima-
tion. The aim of the present paper is to calculate the
Schottky spectrum of beams with internal ordering. As
we can see in Sec. II the Schottky spectrum may be ex-
pressed in terms of the dynamical structure factor of the
system.

The dynamical structure factor is one of the most
widely used characteristics of the crystal in condensed
matter physics. There exists extensive literature describ-
ing methods of calculation of the dynamical structure
factor and the application of these methods to the experi-
mental study of x-ray or neutron scattering in solids and
liquids (see, for example, Refs. [16,17]). Also, during the
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past two decades intensive theoretical and experimental
studies of some types of quasi-one-dimensional crystals
have been carried out [18,19]. It has been shown that the
dynamical structure factor of an infinite atomic chain is

quite different from the case of 3D crystals. The aim of

the present paper is to analyze some peculiarities of the
phonon spectrum of the ordered ionic chain and obtain
the Schottky spectrum for it.

For ion beams in a storage ring there are additional
peculiarities, and we must take into account in our calcu-
lations the following.

(a) The interaction of the ions is described by the
Coulomb force, which is a long-range force.

(b) The ion beam in a storage ring is not an infinite
chain, but a circle of typically 10° or more ions.

(c) This system can have distinct temperatures longitu-
dinally and transversely; the temperature of the transver-
sal motion can be up to 10 times greater than the tem-
perature of the longitudinal motion.

(d) From a thermodynamical point of view, the state of
a typical ion beam is far from equilibrium and we must
take into account that the cooling of the ion beam by an
electron (or laser) cooler is accompanied by the heating of
the beam due to intrabeam scattering (transfer of temper-
ature from the transverse to the longitudinal direction),
which increases with the density of the beam and the
charge state of the ion.

We start with the case of an N-ionic periodic lattice
with interionic distance d in equilibrium and circumfer-
ence L =Nd. Our treatment is based on the harmonic
approximation. In this case we can use the phonon for-
malism for the description of the ion chain. This approx-
imation is valid if the temperature of the beam is small
enough. Computer simulations of 3D Coulomb crystals
[20,21] show that solid-liquid phase transition occurs at
I'~10% In the case of a one-dimensional (1D) crystal
there is no sharp phase transition [22], but we can expect
that some crystal-like structures exist at I' > 10%. In Sec.
II the basic principles of longitudinal Schottky diagnos-
tics are considered and the relationship between a signal
in the pick-up and the dynamical structure factor of a 1D
crystal is obtained. In Sec. III we calculate the dynami-
cal structure factor and consequently the Schottky spec-
trum of an ideal harmonic chain of ions. In Sec. IV we
study the ion chain that interacts with a thermal bath,
and both cooling and heating processes modify the form
of the dynamical structure factor of the beam. A general
discussion of these questions is found in Sec. V. In the
Appendix we introduce the phonon description of the dy-
namics of the 1D lattice.

II. LONGITUDINAL PICK-UP DIAGNOSTIC
OF THE ION-BEAM SCHOTTKY SPECTRUM

In the pick-up (PU) system each ion produces a signal
J()=kZevyd(z (t)+vyt) , 2.1)

where Z is the ion charge, z (t) is the ion coordinate in a
system that moves with the mean velocity of the beam v,
relative to the PU, ¢(z) is the normalized sensitivity func-
tion of the PU (see Fig. 1) f¢(z)dz =1, and « is the sensi-
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FIG. 1. Scheme of the pick-up diagnostics of the longitudinal
Schottky spectrum in a storage ring. The ion beam moves with
mean velocity v, relative to the PU. A profile of the sensitivity
function of the PU is shown.

tivity factor of the PU. The mean value j(z) is
Jo=kZevy/L. We can use j, to normalize the signal in
the PU. A beam of N ions with the coordinates z; pro-
duces a signal
N
J()=joL 3 ¢(z;(t)+vet) . (2.2)
j=1

The periodicity of ¢(z) in the case of a storage ring with
circumference L gives us the possibility to express it as a
Fourier series

d(z)= 3 Py exp(—i2meMz/L) .
M=—w

(2.3)

The Fourier transform over time of j(t) is a sum of
harmonics over M

Jo)= ¥ JIylo—Mo,), (2.4)

M=— o
where wy=2mvy /L is the revolution frequency of the ion
beam in a storage ring. The contribution from each har-
monic in Eq. (2.4) is
© [int~iQsz(t)]

N
T @)=joLéy 3 [ e
ji=1 e

dt , (2.5)

where Q=w—Mw, and Q) =27M /L is the wave num-
ber of the Mth harmonic.

In Fig. 2 the Schottky spectra for the following three
important special cases are shown (positive frequencies
only).

(a) Ideal gas with zj(t)=sz+vjt. The values z; are
randomly distributed over the ring and the distribution of

v; corresponds to the Maxwellian distribution with tem-

0

perature T and the average thermal velocity
v =(2T/m)'?,
N —iQ 29
I Q)=2mjoLéy 3 8(Q—Qpyv;)e M7 . (2.62)

ji=1

The statistically averaged |J(w)| is a superposition of
Gaussian peaks ~exp[ —(0—Mwy)*/(Quvy)?] located
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near each harmonic of the revolution frequency of the
beam w,. The width of the peaks increases with increas-
ing M, and at large enough M these peaks overlap.

(b) At T=0 all v; =0 and the ideal-gas limit yields

I N —iQ 20
Lt (Q)=2mj, Ly 8(Q) T e M.
j=1

(2.6b)

All peaks at v, —0 are transformed into 8§ functions; the
intensity of each peak is of the order of N'/2.
(c) Ideal 1D lattice at T =0 where z;(2)=jd
N
Jur AQ)=27kZevy, 8(Q) T e
j=1

=27joL ¢ p ()840 »

*iZﬂMj/N

(2.6¢)

where 8, is assumed to be over modN. The spectrum
J

N . _ . _
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FIG. 2. The longitudinal Schottky spectrum of three ideal
systems. The statistically averaged profile of |J(w)| is plotted as
a function of w/w,. (a) Ideal gas at finite temperature; the spec-
trum is a superposition of Gaussian peaks located near each
harmonic of the revolution frequency of the beam w,. The
widths of peaks located near harmonic M increase with increas-
ing M as Qpvy, and at large enough M these peaks are over-
lapped. (b) Ideal gas at T =O0; all peaks at v, —0 are
transformed to & functions, the intensity of each peak is of the
order of N'72. (c) Ideal crystal at T =0; the spectrum contains
only 8 peaks at ©=0,Nwy,2Nwy, . . .; the intensity of each peak
is proportional to N.
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contains only 8 peaks at ¥=0,Nwy,2Nay, . .
sity of each peak is proportional to N.

In a general case the procedure of a thermal averaging
includes a calculation of the mean values over initial
phase shifts for all collective modes and if M0 we ob-
tain zero for the thermal average of Jy(w). As we will
see later if the frequency w or the harmonic number M
are small enough, the total spectrum J (w) is the sum of
nonoverlapping bands that corresponds to each value of
M. In this case the square of J(w) is also the sum of the
squares of the contributions from the Mth band in Eq.
(2.4),

(T (@)?) =3 (T ( Q) 12)
M

.; the inten-

2.7)

where Q) =w—Mw, and the contribution of the Mth
harmonic is

(2.8)

The function ¢(z) is spread over some length Dpy; that
is of the order of the diameter of the PU. If the wave-
length of the Mth Fourier harmonic Ay =27M /L is
much greater than Dpy, then we can use a 8-function ap-
proximation for the sensitivity function: ¢(z)=¥6(z). In
the rest of this paper we consider this case, which for
usual pickups is valid for M <10% hence we have
¢p =1/L. For higher harmonics the correct sensitivity
function must be used in Eq. (2.8). The fact that the Mth
band has no overlapping with other bands allows us to
study the power spectrum of fluctuations in each band in-
dependently from other bands. In the rest of the paper
we calculate the contribution of an isolated Mth band
and can omit the index M in Q,, and Q,,.

Equation (2.8) contains the density-correlation function
of the ion beam [16,17]

N .
[Q1,—t)=— 3 (¢ CHTaW 1 )
N, 7=
which depends on the difference of ¢, and ¢; only. The
Fourier transform of I(Q,t) is expressed in terms of the
dynamical structure factor of the chain

sQ)=[" erigniL. 2.10)

In an experiment the measurement of signals on a PU is
performed over some finite time ;. If we want to obtain
the Schottky spectrum with resolution AQ) we must take
t, large enough so that AQ¢y>>1. In this case an in-
tegration over both ¢, and ¢, in Eq. (2.8) from O to ¢, pro-
vides a direct relation between the Mth band of the
Schottky power spectrum and the dynamical structure
factor

(T ()?) =27Nj3t,S(0,Q) . (2.11)

The calculation of the dynamical structure factor of the
ion beam in a storage ring is the main purpose of the
present paper.
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Our analysis of Schottky spectra was performed in a
coordinate system moving with the ion beam. However,
PU measurements are made in a laboratory system and in
the case of a relativistic ion beam  with
y=[1—(vg/c)*]"'"? we must transform the Schottky
spectrum into a comoving system. Frequency Q’, time ¢,
and current j; in a laboratory system are related to their
values in a comoving system by t,=tq/y, Q=Q'y, and
Jjo=Jovr- This provides

_ylIg@myD

S(Q,0)= 2.12)
© 2mtoN 1o P

The total power of the Mth band of the Schottky spec-
trum is related to the static structure factor

S(@=[" 5(0,0)d0=1(Q,0) . (2.13)

III. HARMONIC DYNAMICS OF THE ION BEAM

At temperature 7 =0 the equilibrium structure of the
one-dimensional lattice is an ideal linear chain with the
average interionic distance d =L /N. The z coordinate of
the jth ion is the sum of the position at equilibrium
z}"—:d j and the displacement from the equilibrium u;(¢),

(3.1

The phonon amplitude a(q)=a(q,t) is determined as a
Fourier transform of the ionic displacements

1
a(q)————\/]—v-

zi(=dj+u;(t) (j=1,...,N).

N —iadi 27

> uje 9dj for each g ="k . (3.2)
j=1 L

In a coordinate system moving with the ion beam
a(qg=0)=0.

The interaction between ions in a storage ring is de-
scribed by a modified Coulomb potential U(z). The
short-range modification is related to the influence of a
finite amplitude of transversal oscillations a, [see Fig. 3
and Eq. (A8) in the Appendix]. The long-range
modification is the effective screening by the charge in-
duced on the metallic tube of a storage ring. In the rest
of this paper we use the harmonic approximation that
corresponds to neglecting in the expansion of the poten-
tial energy all terms higher than u;u;. This limits the va-
lidity of our model to sufficiently small longitudinal tem-
perature (I' > 1).

In the case of an ideal phonon system we can use the
phonon formalism to calculate some thermally averaged
characteristics of the ion beam. In accordance with the
Boltzmann formula, the probability of observing the ionic
configuration with the potential energy ® is proportional
to exp(—®/T). We note that in the presence of dissipa-
tion the Boltzmann distribution ansatz is no longer
justified in general as will be seen later. The use of the
basis of phonon amplitudes is preferable because on this
basis the total potential energy is a simple sum of terms,
each related to a single ¢ and there are no terms contain-
ing the product of phonon amplitudes with distinct g. On
the basis of phonon amplitudes exp(—® /T) is a product
of multiples, each of which depends on a single-phonon
amplitude a (g). This fact allows us to calculate the mean
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FIG. 3. The potential of interaction (in units of (eZ)?/a,) of
two charged disks (solid line) and two charged points (dashed
line) as a function of the distance z between them.

values for each phonon mode independently from anoth-
er. Each phonon mode is a harmonic oscillator with the
potential energy mw?*(g)a*(q)/2. The phonon frequency
(d) for an ion chain in a storage ring is calculated in the
Appendix (see Fig. 4).

The mean square of the phonon amplitude is [16]

(lalg,n2y=—L—

. 3.3
mw?(q) (3:3)

In the state of the thermodynamic equilibrium the tem-
perature T is a constant; but in our case the mean kinetic
energy and amplitude of each phonon mode are deter-

Cl_l_/d=1
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FIG. 4. Typical longitudinal phonon spectra w(q) [in units of
Z /(md?*)'"?] of the 1D Coulomb crystal for some values of the
amplitude of transversal oscillations a,. All curves are calculat-
ed for the ratio of the interionic spacing to the radius of
effective screening of the Coulomb interaction d /D =1073.
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mined as a result of the competition between cooling and
heating of the beam (see Fig. 5). Now the temperature
can be a function of g, and we can use Eq. (3.3) as a
definition of T'(g). The function T'(q) then is determined
by the cooling and heating rates v.(q) and v, (q).

The phonon frequency w, =w(q) tends to zero at small

q as

w(g)=clql , (3.4)
where ¢ is the sound velocity of the ionic chain

=2[(eZ)*/d]A (3.5)

with A the logarithm of the ratio of the screening length
D to the interionic distance d or to the amplitude of
transversal oscillations a | if a, > d (see the Appendix). In
any case typical values of A do not exceed 10. From Eq.
(3.3) it follows that in thermal equilibrium the maximum
of the phonon amplitude corresponds to the phonons
with smallest g.

The ratio of the mean amplitude of thermal oscillations
to the interionic distance is called the Lindemann ratio

C, [23]. Using Eq. (3.3) we obtain, for the case of T in-
dependent of g,
(Ju(0)[) T 1
ct= = . (3.6)
t d? md>N % »*(q)

In the case of an infinite chain the sum over ¢ must be re-
placed by an integral. The acoustic behavior of phonon
frequency at small g results in an infinite value for
(lu,(t)|*). The infinite amplitude of thermal oscillations
of all ions is a typical property of 1D (and also 2D) crys-
tals. In 3D crystals there also exist acoustic phonons
with w(q)=c,|q|, but the integral like Eq. (3.6) over d3q
has no divergence at small ¢ and the mean square of
atomic displacements has a finite value. This means that
in 3D crystals there exists long-range order, but in 1D
crystals there exists only short-range order.

In the case of a larger, but finite N we can extract the
divergent term in Eq. (3.6). At small ¢ we can use the
long-wavelength approximation for the phonon frequen-

Heater Tp~ 10°K

v, (q)

T=TI(q)
Ve (q)

ION BEAM

Cooler T.~1K

FIG. 5. The illustration of the thermal flow at a nonequilibri-
um state. The mean kinetic energy of each phonon mode is a
result of steady-state equilibrium between heating and cooling;
the rates of two these processes are g dependent and the phonon
temperature is also a function of q.
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cy (3.4). It provides
_2NT &1 N
2 - 2 =
Ci= ( § 2 = JarA - (3.7)

Analysis of experimental data concerning solid-liquid
phase transition [23,24] yields an empirical criterion for
the melting temperature of 3D crystals: this phase transi-
tion takes place at C; =0.1. Molecular-dynamics simula-
tion of 3D Coulomb systems [20,21] shows that solid-
liquid transition occurs at I'=170. The same value of I
in the case of a 1D ion beam with N ~ 10° particles im-
plies a Lindemann ratio of the order of 10! or the mean
amplitude of thermal oscillations is much greater than
the interionic spacing d.

To test the validity of using the harmonic approxima-
tion if I'>1 but C; is also greater than unity we must
calculate the spatial correlation function. In the frame-
work of the long-wavelength approximation (3.4) from
Eq. (3.3) follows

<[u1+j(t)_ t)]2>/d2
Nd2 2 (la(g,1)]*)[1— cos(qdj)]
=— G(27j/N) , (3.8)
m2TA
with [25]
- l—cos(kw) _ Qmr—w’)w’
G = ==
(w) kél 2 2
where w'=w mod27 . (3.9)

Analysis of the correlations of ionic displacements in
Eq. (3.8) shows that at I" >>1 the relative displacements
of neighboring ions are much smaller than d and this
Justifies the use of the harmonic approximation in spite of
the large amplitude of ionic oscillations (C; > 1).

The phonon formalism allows us to calculate the two-
time correlators,

W[(t):<[u1+j(t +t‘)_ul(t,)]2>

=% S (1—e " ) (a*(q,t +1")alg,t")) .  (3.10)
q
For an ideal harmonic oscillator [16]
(a*(q,t +1")a(g,r))=Teoslolg] (3.11)
mao-(q)
In the frame of the long-wave approximation (3.4)
2w(jd —c,t)
W, (n=—9E L
47°AT L
27w (jd +ct)
3 ] . (3.12)
To obtain the mean value of exp{—iQdj

—iQ[u; (¢t +1')—u(t")]} in Eq. (2.9) we can perform
independent thermal averaging of each phonon mode g.



2024

This gives

<e4[Q[uj+,(t+t')~u,(t’)]>=e—Q2Wj(t)/2 (3.13)

In the case ' >>1 the exponent in Eq. (3.13) is a slowly
varying function of j. This means that we can replace the
discrete function W,(#) by the continuous function of
z =dj and replace the summation over j by integration
J

2m(z —cgt)

¢ L

exp[ —Q*W(z,t)/2]= exp [—az

where a®*=M?/(2T AN).

The function exp[ —a’G (w)] is a periodical function of
w with period 27. Its Fourier transform is expressed in
terms of the complex error function [26]

H(k):L Z”e[ipw—aZG(v)]dw
27 Y0
. o —k/atimas2?
2Vra

Xlerflk /a—iam/2)—erflk /a+iam/2)] .

(3.15)
Substituting (3.14) into Egs. (2.10), (2.9), performing in-
tegration over ¢ and z, and using orthogonality relations
for the Fourier transform, we obtain

S B(Q—kQ,),

k=—o

S(Q, Q)= (3.16)

where Q; =27c /L is the revolution frequency of a sound
wave in the storage ring,

M—k
2

M+k
2

H

B,=NH

if Mtk are even numbers (3.17)

and B, =0 if M =k are odd numbers.

The dynamical structure factor S(Q,) is a sum of §
functions, but an experimental measurement of
(|J(Q)|?) transforms each & function into a band with
the characteristic width of the order ¢, .

As we will discuss below the 6-function structure of
S(Q,Q) exists if the characteristic cooling and heating
time scales are long compared with the time scale of the
measurement. This 8-function structure of the dynamical
structure factor is a consequence of the space-time
periodicity of correlation functions (see Fig. 6). If we
produce some distortion of density of the beam at time
t =0, it provides two waves moving with velocity ¢, to
the left and to the right on the ring. At time t,=L /c,
both of these waves come back to the initial point and we
obtain the same density profile as at t =0. Moreover, as
we can see from Fig. 6(c) there exists also a combined
type of symmetry. At time t =, /2 when all excitations
are passing only half of the ring, they also recombine into
their initial state, but rotated by 180° (or shifted on L /2).
This explains why only odd or only even B, are not equal

+G
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over z. As we can see in Eq. (3.12) for L >>d the main
contribution to the function W (z,t) is obtained by using
the long-wave approximation. Taking into account
dispersion produces only a small correction to it. The
dynamical structure factor (2.12) is the two-dimensional
Fourier transform of exp[—QzVVj(t)/Z] and now we
must analyze the properties

I

to zero in Eq. (3.17) and the distance between 8§ peaks is
2Q,.

Typical profiles of the dynamical structure factor are
presented in Fig. 7. In the case a>>1 from (3.15) it fol-
lows [18] [see Fig. 7(a)]

_ a’/4
(ra/4)2+ k%

2m(z +cgt)

I (3.14)

H (k) (3.18)
This case is typical for the case of neutron spectroscopy
of phonons in quasi-one-dimensional crystals [19] where
L — o but the wave vector Q has some fixed value so
that the harmonic number M =LQ /(2m) also tends to
infinity. The interval between 8 peaks 20 tends to zero
and the fine structure of the spectrum is smoothed. The
dynamical structure factor (3.16) is a product of two
Lorentzian functions (3.18) and the width of each

/‘L&l

'U(Z)
[

t=0 t=ts/4
() ®)

[ Ulz)

| Ulz)
]

O

t= fs/z f:fs
() (d)

FIG. 6. Propagation of long-wave excitation in a cyclic 1D
crystal with no dissipation. The profile of an ionic displacement
u;(t)=u(z) is shown for (a) t =0, some initial profile of dis-
placements (and velocities) is excited; (b) at ¢ > O these initial ex-
citations produce two waves moving in opposite directions in a
storage ring; (c) at ¢ =t,/2 these two waves result in the initial
profile but rotated by 180° (d) at ¢t =1¢, the system returns to the
initial state.
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Lorentzian function is proportional to the temperature.
In the opposite limiting case a <<1 we can expand
(3.17) in a power series in a? (or temperature)

H(k)=a?/(2k?) at k50,
H0)=1—a?’r/12 at k=0.

(3.19)
(3.20)

The dynamical structure factor has the structure shown
in Fig. 7(b). At Q=x=c;Q there are two peaks with the
intensity proportional to the first power of temperature,

2
SrmEToe (3.21)

2A
The intensity of all other peaks is a product of two H,
with k0 and contains a fourth power of a or a square
of the temperature.

Biy=

IV. THE DYNAMICAL STRUCTURE FACTOR
OF AN ION BEAM WITH DISSIPATION

In the general case our ion beam is not an isolated sys-
tem but rather interacts with cooling and heating baths

(a)

0.020 ———F—————— T 7T

0.015 -

S(0,Q)

0.010

0.005 + ”
0.000 |.HHIII”H
-3.0 -2.0 -1.0 0.0 10

Q/(QCs)

l”“yémal

.0

(b) 0.20

0.15 .

S(Q,9)

0.10 - -

0.00 Lt " 1 1 l l l ] Y 1
-30 -20 -0 0.0 1.0 20 3.0

Q/(QCS)

FIG. 7. Typical plots of the dynamical structure factor of a
1D ordered beam in a storage ring without dissipation. Profiles
have a 6-peak structure with spacing 2(); between peaks: (a) in
the high-temperature case with M =16, a=1.6 the envelope
curve of 8 peaks is a product of two Lorentzians; (b) in the low-
temperature case M =4, a=0.4 there are two main peaks at
Q==xw(Q).
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through rates v.(g) and v,(g). The form of the function
v.(g) depends on the details of the electron-cooling fric-
tion force. The longitudinal heating is a result of col-
lisions of the ions, which are supposed to have a trans-
verse temperature (emittance). This well-known intra-
beam scattering depends on the local values of the density
and the temperatures. These vary around the ring ac-
cording to the focusing structure of a particular storage
ring, and a calculation of rates requires a considerable
numerical effort [27]. In the remainder of this paper we
make the simplifying assumption that the (longitudinal)
temperature as well as the cooling rate are independent of
g. The equilibrium can thus be described by two parame-
ters T and v, where the latter is the effective relaxation
rate. The interaction with the thermal bath provides
some fluctuations of the energy of the beam and we can
take into account that this interaction modifies the pho-
non equations of motion. If we assume that the ion beam
is a part of a big harmonic system then we can use Eq.
(3.13) to calculate the dynamical structure factor. In cal-
culating W;(t) we must take into account the influence of
the interaction with the whole system (thermal bath).
The standard procedure is to use the phonon equations of
motion under the action of a random heating force
F(t)=my (t) and a viscosity term that describes the in-
teraction with the cooling system

d(g,t)+va(q,t)+oXqlalq,t)=y(r) . (4.1)

In the case with no time correlations of y(t) (“‘white
noise,” see Ref. [22]) we can allow the statistically aver-
aged values of (|Y(w)|?) to be equal to some constant
that is proportional to the temperature of the thermal
bath. This implies

(a*(g,t +t')al(q,t"))
_vT p+o expliot)dw
mm Y —w [0’—0Xg)P+Ve?

4.2)

The value of the prefactor in (4.2) is determined from Eq.
(3.3) for the mean potential energy at the state of thermal
equilibrium.

Now we can calculate W;(z). From (3.10) it follows

Wi=S 2T (q)v(q)

J p mwN

(4.3)

+o 1— exp[i(wt —qdj)]
X d
L e tgar®

This equation takes into account that both the tempera-
ture and the relaxation rate may depend on gq.

The dynamical structure factor is the two-dimensional
Fourier transform of exp[—-Q2Wj(t)] and now we must

analyze the properties of W;(¢) as a function of j and ¢.
As we can see in Sec. III the collective motion of ions in a
1D lattice is well correlated at a small distance dj be-
tween / and [ +j ions [Wy(t =0)=0]. The function
W;(t =0) increases with increasing j and reaches the
maximum value W_, at j =N /2 and then decreases so

max
that Wy(r=0)=0. From (3.14) it follows that
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W ax <4d>C} or
27*M?
3TAN

W ;(t) has the same properties as a function of time in the
case with no dissipation and dispersion: the function
W (1) is symmetric relative to the change jd —c;t in Eq.
(3.12) and this function is a periodic function of ¢ with the
period t, =L /c, (see both dashed curves in Fig. 8).

In the case of finite relaxation rate v the periodicity of
W, (t) over t is broken (see Fig. 8) and at ¢ > v~ ! the func-
tion W;(¢) tends to W,,,,. For the PU diagnostic it is im-
portant to consider a case of small enough M so that
Q?W ax <<1. This requires M?<<3T'AN/(27?) or
a << 1, where a was determined in Eq. (3.14). We simply
denote this case as the low-temperature case, where a
also depends on both T and M. In this case we can ex-
pand the exponent in Eq. (3.13) into a power series in
QZWj(t) and take the linear term only. This gives

(Qc, )? v(Q)
27AT(Q) | [Q2— Q) P+vHQ)IQ2
4.5)

Q*W ax < 4.4)

S(Q,Q)=

The plots of the dynamical structure factor for this case
of small a are shown in Figs. 9(a) and 9(b) for some
values of v. In the case of v <<w(Q) the profile has two

Q’ W, ()12

tts

FIG. 8. Schematic plot of the function W(¢) for some values
of temperature and relaxation frequency v. In the low-
temperature case @ <<1 (curve 1) we have Q*W,,, <1 and all ¢
(and z) give an appreciable contribution to S(Q,Q); at v=0
(dashed line) the periodicity of Wy(¢) results in a 8-peak struc-
ture of S(Q,Q); in the high-temperature case a>>1 with small
enough v it is important that at ¢t =¢,,2¢,,3¢,, . . . (curve 2) up to
some multiple n, of the period of sound-wave revolution, where
Q?W,(t)/2 is of the order or smaller than 1. The spectrum has
the fine structure like in Fig. 7(b) but the widths of the peaks are
of the order of Q,/n, [the profile of W(t) for the case v=0 is
shown as a dashed line]. At large enough v (curve 3) only a
small interval of time |¢| <ty is important for calculating the
dynamical structure factor.

V. V. AVILOV AND I. HOFMANN 47

(2) (b)

5

~
S

S(%Q)/Sfﬂ,())

S(Q,)/5(Q,0)

3

7 3 7 9 -1 [
Q1(QCs) QIacs)
(<)

S(Q,Q)/51Q,0)

Q/(acs)

FIG. 9. Plots of the dynamical structure factor S(Q,Q), pa-
rameters S(Q,0), S.x, and dw are listed in Table III for some
values of T, M, and v: (a) at @ <<1 and v << Qc, there are two
well-distinguished peaks located at ) =+ Qc, with the widths of
the order of v; (b) at a << 1 but v>>Qc; there is only a central
peak with the width 8w=~Q?%c?/v; (c) in the high-temperature
case (a>>1) the width y, of two peaks located at Q==Qc,
does not depend on v.

well-distinguished peaks at Q= +w(Q) with the width of
the order of v. If v>>w(Q) then the profile has a central
diffuse peak. The total power of the Mth band of the
Schottky spectrum is related to the static structure factor
(2.13)

1
2T(Q)A °

where we have taken into account that I' may be a func-
tion of Q. The static structure factor is independent of v
and may be used for a direct measurement of the temper-
ature distribution function 7(Q). The information on
the relaxation frequency is available from the width of
the peaks of S(Q,Q) in Fig. 9.

In the opposite “‘high-temperature” case, a>>1, and
contributions of all phonon modes into S(Q,Q) are
mixed. Typical plots of W(¢) as a function of time for
this case are shown in Fig. 8 (curves 2 and 3). In the case
of a small relaxation rate (£;v <<1) the profile of W;(z) at
times of a few periods of the revolution of a sound wave
in a storage ring f; is similar to the W;(z) in the case of
no dissipation and the profile of the dynamical structure
factor corresponds to Fig. 7, but in this case all § func-
tions are spread into the peaks with the characteristic
width of the order of v. We can introduce some charac-
teristic time of fluctuation decay ty that corresponds to
Q’Wy(ty)/2=1. In the Fourier transform (3.19) only
the interval of [t|~¢, is important. In this case the

S(Q)=0%la(Q,1)*)= (4.6)
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TABLE 1. Parameters for ESR storage ring.

Laboratory Comoving
system system
Ions 233U92+
Ion kinetic energy E; 500 MeV/u
Relativistic factor Vi 1.537
Number of ions N 1.0X10°
Circumference L 1.09X 10* cm 0.71X10* cm
Interionic distance d 0.71X1072 cm
Ion velocity Vo 2.27X 10 cm/s
Current per ion Jo 4.7X107" A 3.1X1071 A
Transverse amplitude a; 0.05 cm
Logarithmic factor A 5.3
Sound velocity <, 0.86X10° cm/s
Frequencies of revolution
Ion beam , 1.3X107 s7! 2.0X107 s7!
Sound wave Q, 50 s7! 76 57!

dynamical structure factor corresponds to the case of an
infinite chain of atoms. If v¢, <<1 we need also not take
into account the dissipation. The long-wave approxima-
tion (3.16) with G (w)=~m|w| /2 at small w provides

d . .
Wj(t)zm(bd-—cst|+|]d+cst|). 4.7
It provides t5 =4AT"/ (de,Q?). The dynamical structure
factor is [18]

e ro

md [yg+(c, @ +QP)[yy+(e,Q — Q)]

S(Q,Q)=

’

(4.8)

where yo=1/1,. A typical plot of S(Q,Q) for this case
is presented in Fig. 9(c). The profile of the dynamical
structure factor has two well-distinguished peaks at
Q=x*£c,Q with width y [the ratio of ¥ to Qc; is equal to
(Qd)/(4AT") <<1]. In the case of large relaxation rate
v>y o the width of these peaks is of the order of v.

It is important that the long-wave approximation for
W(t) is possible at large enough j and ¢ only. The pho-
non dispersion is important if the phonon wavelength is
smaller than the effective radius of interionic interaction
D (see the Appendix). This means that Egs. (3.12) and
(4.7) can be used only outside small regions |jd| <D and
|tc;| <D. In the low-temperature case these regions give
only a small contribution to the dynamical structure fac-
tor in Eq. (4.5). But in the case of very large a? the main

contribution to (4.8) provides a small interval of ¢ and z,
and the long-wave approximation (4.7) is not enough.
Some questions concerning numerical computation of
S(Q,Q) for 1D phonons with dispersion are analyzed in
Ref. [19].

V. GENERAL DISCUSSION

Now we try to use our theory to describe possible
Schottky spectra. As an example, in Table I there are
listed some parameters of a ,33U°?" ion beam for the ESR
storage ring at GSI Darmstadt. The values of the param-
eter I" and the relative momentum spread
8p/p =(T/mv}y?!/? as a function of T are listed in
Table II. Our harmonic approximation is possible at
I'>>1 or at T <<2X10° K. In this table is also given the
static structure factor S(Q). In the framework of our
harmonic approximation the value of S (Q) is proportion-
al to T and independent of M (and v). The parameter a
is calculated for M up to 10*. For higher M we must take
into account the spread of the sensitivity function ¢(z) in
Eq. (2.8). We can see that the ‘“low-temperature” case
a <1 applies for all T and M except in the limit of very
large T and M.

In Table III are listed parameters of the profiles of the
dynamical structure factor in Fig. 9 for some T, M, and
v. In the low-temperature case at 7' <1000 K at Qc, <v
there are two peaks at Q= =*Qc, with the width of the or-
der of v [Fig. 9(a)]. At Qc, > v there is a single peak with

TABLE II. Parameters of the ion beam.

a
T (K) r 8p/p S(Q) (M=1) (M =10?%) (M =10%)
0.1 2% 10* 0.82x1077 0.47X107° 0.22X107° 0.22x1073 0.22x107!
1 2X10° 2.6Xx1077 0.47X107* 0.69Xx1073 0.69%X103 0.69X107!
10 2% 10? 0.82X107° 0.47X1073 0.22Xx10™4 0.22X107? 0.22
100 2% 10! 2.6X107° 0.47X 1072 0.69Xx10™* 0.69X 1072 0.69
1000 2 0.82X107° 0.47Xx107! 0.22X1073 0.22x107! 2.2
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TABLE III. Parameters of the dynamical structure factor.
v [s'] Qc, [s7'] S(Q,0) [s] Smax_[8] 8w [s7'] Fig.
T=1K
M=1
1 0.76 X 10? 0.26X107° 0.15X 1073 =v 9(a)
10 0.76 X 10? 0.26X1077 =5(Q,0) 0.58 X 102 9(b)
104 0.76 X 10 0.26X107° =5(Q,0) 0.58 9(b)
M =100
1 0.76 X 10* 0.26X 10713 0.15x107° =v 9(a)
10? 0.76 X 10* 0.26x 107" 0.15%x1077 =v 9a)
10 0.76 X 10* 0.26X10° =5(Q,0) 0.58X10* 9(b)
M =10*
1 0.76 X 10° 0.26Xx 107" 0.15X1073 =v 9(a)
10? 0.76 X 10° 0.26X107 1% 0.15x1077 =v 9(a)
10* 0.76 X 10° 0.26X107 13 0.15X107° =v 9(a)
T X1 XT XT X1
T=10° K
M =10*
v<10° 0.76 X 10° 0.15x10°1° 0.17X1073 0.11x10* 9(c)
the width 80 =(Qc,)?/v [Fig. 9(b)]. An increase of tem- APPENDIX: HARMONIC PHONONS
perature produces a proportional increase of the values of IN A TWO-TEMPERATURE 1D COULOMB
$(Q,0)=S(Q,0=0) and S,,. The width of the peaks is LATTICE
independent of 7. It is important to note that in the . .
low-temperature case both static and dynamical structure The phonon frequency w(q) is determined by
factors give information concerning the temperature and T dl
v for each phonon mode. wlg)=— 3 |l1—cos 9%y . (A1)
In the “high-temperature” case [T =1000 K, M =10, Mmi=—w N

see Eq. (4.8) and the last line in Table III] the width of
the two peaks in Fig. 9(c), 8o=y, is proportional to T
and independent of v for v <<y,. In this case all contri-
butions of phonon modes into S (Q, () are mixed and the
Schottky spectrum gives information concerning some
average phonon temperature of the beam.

It is interesting to compare the Schottky spectrum of a
strongly correlated phonon system with the case of the
ideal gas in Eq. (2.6a). Each band of the spectrum of the
harmonic system has a width of the order of 2Qc,
whereas the width of peaks in the case of an ideal gas is
of the order of 2Qu,. From Eq. (3.5) it follows that
v% /c¢2=1/(T'A) and in our case I' > 1 we have vy, <<c;.
For a system with I' > 1 and not too large M (i.e.,, a <<1)
the form of the Schottky spectrum depends on M, if the
cooling rate is large enough. A single-peaked spectrum
at low M is changing into a double-peaked spectrum at a
sufficiently large M. This is opposed to the ideal-gas case,
where one expects that the two peaks merge into one
peak due to a reduction of ¢, for short wavelength. It is
proposed that this dependence on M can be used in the
experiment as a signature of correlations or ordering.
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In the case of a small transverse temperature a, <<d and
the potential of the interionic interaction is approximate-
ly of the Coulomb type: U =Z /|z| and

2 _
wz(q)=4(eZ) 1 cos(qdl)_

A2
md 2, [E (A2)
In the limit of small g it provides
2 2eZ)* ,
~— 1 . A3
og)~= ——q’|Inlqd|| (A3)

This nonanalytic behavior of the phonon frequency at
small g is a consequence of the long-range character of
the Coulomb interaction. If we try to calculate the sound
velocity

c,=limw(q)/q , (A4)
q—0

then the sum on / diverges or the sound velocity of the
infinite chain with Coulomb interaction tends to infinity.
A first modification of the interaction potential is the
effective screening of the Coulomb interaction by the
charges induced on the metallic vacuum chamber of a
storage ring. For a perfectly conducting wall all field
lines are perpendicular to the wall, which limits the in-
teraction to a maximum screening length D of the order
of the diameter of the vacuum chamber. In calculating
the phonon frequency and the sound velocity we must
truncate the interionic interaction at distances larger
than D or introduce in Eq. (A1) some screening factor
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that vanishes at distances greater than D. If we take this
screening factor as exp(—z /D) it provides
d’o*q) _ 4eZ)* &

dq? p 121 cos(qld) exp(—1Id /D)

2
HeZ) |11 —gliad—a/p)| | (AS)

md

Equation (AS5), in the limiting case g >>D !, transforms
into Eq. (A2) but in the long-wave limit ¢ <<D ~! it pro-
vides a soundlike dispersion law w(g)=c,|q| with

2
=22 1. pra) . (A6)
md

The finite amplitude of transversal thermal oscillations
also modifies the potential of the interionic interaction at
distances of the order of @,. From the dynamics of elec-
tron and laser cooling of the ion beam it is more obvious
to expect extremely low longitudinal temperatures,
whereas the transverse might be much higher. It is also
important that the transverse oscillation frequencies are
much larger than the phonon frequency of the longitudi-
nal motion. This rather anharmonic system may be de-
scribed within the method of self-consistent phonon ap-
proximation [28]. In the description of a slow system
(longitudinal phonons) we can use the potential averaged
over the motion of a fast subsystem (transversal motion).
The transversal focusing potential of the ion beam
U,(r)=mw}r?/2 is characterized by the betatron fre-
quency ®,, which is assumed to be independent of the

longitudinal coordinate z. The distribution of radial
charge density can be assumed to be a Boltzmann distri-
bution with the transverse temperature 7T,. For
sufficiently high transverse temperatures the space-charge
potential can be ignored compared with the focusing po-
tential and we have p(r)=pexp[ —U,(7)/T,] or

= eZ exp(—r?/2a?)

(r 8(z) , (A7)
p 27a?
where a, =[T, /(mw?})]'/? determines the effective am-

plitude of transversal oscillations.

The potential of interaction of two “charged disks” (as
proposed to explain the observations of the experiment of
Dementev et al. [1]) can be evaluated by using the
Fourier transform technique: Performing integration we
can express the effective potential of interaction in terms
of the error function [26]

U(z)z(eZ)Zfo“’ exp(—klal—|zk |)dk,

(eZ)V'm z?
———exp | — |erfc
201 4a

; (A8)

: 2a,

At z~a; this potential is much smaller than the
Coulomb potential (see Fig. 3). At large distance the po-
tential (A8) is rather Coulomb-like and in calculating the
phonon frequency we must take into account the screen-
ing factor (AS5). It provides for the phonon-dispersion re-
lation

e?’PtWcos(gd)—1 . (A9)

2
0)2( 2(eZ)

- . 2 2
q)= I fo dw w?exp[ —w?(a, /d)?]

exp(d/D +w)—1 24/ +wl_2,d/D+wens(gd)+1

We can use this formula for the numerical calculation of w(q) for all g and parameters of the problem d, a,, and D in

Fig. 4.

Expanding (A9) in a power series on ¢ and taking into account that d /D <<1 (for typical storage ring d ~ 1073-1072
cm and D ~ 10 cm) we obtain at small g the soundlike dispersion relation but with

2
CSZ:Z_(?._Q In(D/a,) .
md

(A10)
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